Safe-Operating Areas (SOAs) for Reliable High-Voltage Analog Devices

J.W. McPherson, Ph.D.

IEEE Fellow
Texas Instruments Senior Fellow Emeritus

Many Uses For High-Voltage Analog

Fundamental Reliability Physics Limitations

Fu	Indamental Device Operational Issues at t=0
	Silicon Avalanche Breakdown Field: 0.2-0.8 MV/cm
	SiO ₂ Breakdown Field: 10-15 MV/cm
	Melting Temperature of Metals: Al(660°C), Cu(1083°C)
	Fusing Current Density for Metals: ~ 2x10 ⁷ A/cm ²
	BVdss and BVii Limitations
	Latch-Up /ESD
Fu	ındamental Device Reliability Issues for TF=10yrs@105°C
	Electromigration (EM)
	Stress Migration (SM)
	Time-Dependent Dielectric Breakdown (TDDB)
$\overline{}$	
Ш	Hot Carrier Injection(HCI)
	Hot Carrier Injection(HCI) Negative-Bias Temperature Instability (NBTI)

Safe-Operating Areas (SOAs)

- Electrical SOA (e-SOA)
 - Short Term Issues: BVdss, BVii, Latch-up, ESD
- Thermal SOA (T-SOA)
 - Medium Term Issues: Power Density and Dissipation
- Reliability SOA (R-SOA)
 - Long Term Issues: TDDB, HCI, NBTI, EM, SM, SEU

Critical Electric Field for Avalanching in Silicon

Critical field (~0.2-0.8MV/cm) for avalanching must be avoided ! 5

Voltage Drop Across Junction Depletion-Region

Can safely drop large voltages across junction depletion-regions

e-SOA 5V-CMOS with 80V Drain Extension

Full Simulation of Voltage Drop

Note: Voltage drop from drain to source

(Snapback/Breakdown) Performance

Improving BVii Performance

Fully Integrated LDMOS Device

What About Long-Term Reliability?

Now that we know how to build H-V devices in low-voltage CMOS that work safely at time zero (e-SOA) --- will they last for 10 yrs at 105°C?

Other Considerations:

- ☐ Thermal SOA (T-SOA)
- □ Reliability SOA (R-SOA)

T-SOA

Electromigation in a Power Interconnects

T-SOA

Metal Electromigration Lifetime Versus Temperature

Note: Metal migration (normally requiring 10yrs at 105°C) occurs within ~100sec at 450°C or ~10sec at 550°C.

T-SOA Steady State Heat Flow

Remember ---- for Joule heating analysis, the MOSFET is simply a Gate-Controlled Resistor

In Steady State: $\Delta T = \theta \bullet Power = \theta \bullet (I_{ds}V_{ds})$

Thermal resistance θ is normally expressed in °C/Watt

T-SOA Transient Heat Flow

Heat Generation = Heat Absorbed + Heat Transferred

g = generation of heat per unit volume = J_QE

J_H = flux of heat out of unit volume

Conservation of Energy:

Power Density Input = Power Density Absorbed + Power Density Transferred

$$g(t) = \rho c \frac{\partial T}{\partial t} + \vec{\nabla} \cdot \vec{J}_H$$

where:

 $\vec{J}_H = -k\vec{\nabla}T$, $k = thermal\ conductivity$, $c = specific\ heat$, $\rho = mass\ density$

$$k_{Si} = 83.7 \frac{W}{{}^{o}C m}$$
; $\rho_{Si} = 2.33 \times 10^{3} \frac{kg}{m^{3}}$; $c_{Si} = 6.78 \times 10^{2} \frac{W \sec}{{}^{o}C kg}$

T-SOA

Temperature Rise/Fall Times for Resistors in Silicon

Note: 1ms pulses should reach ~ thermal equilibrium

T-SOA

Transient Thermal Modeling

$$k = 0.84 \text{ W/cm}^{\circ}\text{C}$$

$$\alpha = k/(\rho c)$$

 $= 0.5 \text{ cm}^2/\text{s}$

Most of Thermal-Gradient/
Heat-Flow is in Vertical Direction

$$\Delta T(x, y, z, t) = \frac{\alpha}{k} \int_{0}^{t} \frac{dP(t')}{\left[4\pi\alpha(t - t')\right]^{1.5}} \times \exp\left[-\frac{r^2}{4\alpha(t - t')}\right] dt'$$

[IEEE-TED, vol. 48, #12, Dec 2001, pp. 2796-2802]

T-SOA Modeled Thermal Resistance With 1ms Power Pulse

- ☐ Modeling of thermal resistance in agreement with experiment
- ☐ Modeling is slightly conservative, which is good!
- \Box Thermal resistance θ defines allowed power density (T-SOA)19

Thermal SOA (T-SOA)

Notes: $(1) 40W/0.001cm^2 = 40kW/cm^2$

(2) LDMOS devices can have ~ MW/cm² capability !!

(3) $T_{\text{metal}} = T_J + \Delta T = 100^{\circ}\text{C} + 350^{\circ}\text{C} = 450^{\circ}\text{C}$

(4) Metal lifetime at 450°C is only ~100sec!

What About Long-Term Reliability?

- Thus far ----
 - ☐ We have learned how to generate: electrical safe operating areas (e-SOAs)
 - ☐ We have learned how to generate:

 Thermal safe operating areas: T-SOAs
- Remaining --- Long Term (10yr/105°C)
 Reliability Safe Operating Areas: R-SOAs
 - **Examples:**
 - ☐ Hot Carrier Injection (HCI)
 - Biased Temperature Instability (BTI)
 - ☐ Time-Dependent Dielectric Breakdown (TDDB) ²¹

Standard CMOS Hot Carrier Injection (HCI)

Note: Substrate current is a good proxy for HCI stress

R-SOA HCI During Digital Circuit Operation

Isub current is generated primarily during device switching

To minimize CHC:

- (1) Reduce slew rate of waveform
- (2) Reduce load capacitance

CHC Lifetime Versus Substrate Current

Problem: DEMOS/LDMOS --- difficult/impossible to measure substrate current. Must take empirical stress data.

Example: Generation of HCI-SOA for 30V LDMOS

Vds

Other Voltage Conditions can be Modeled:

$$AF_{Vds} = \exp[\beta(36V - V_{ds})]$$
where: $\beta = 0.43/V$

$$AF_{Vgs} = \exp[-\alpha (4V - V_{gs})^{2}]$$
where : $\alpha = \begin{cases} 1.5/V^{2} & \text{for } V_{gs} \leq 4 \\ 3.4/V^{2} & \text{for } V_{gs} \geq 4 \end{cases}$

> 10 yrs

1 yr		0.1 yr
10yr		1 yr

0.1 yr		0.01 yr		
0.01 yr		0.001 yr		

Example: Generation of HCI-SOA for 30V LDMOS

Note: Keep-out regions (or very low-duty cycle regions) are clearly highlighted in the HCI-SOA

R-SOA Time-Dependent Dielectric Breakdown

Note: All dielectrics will eventually breakdown

R-SOA Time-Dependent Dielectric Breakdown Models

R-SOA TDDB Data for Silica-Based Dielectrics

Breakdown Strength E_{bd} changes but not slope γ

HV TDDB Data for Silica-Based Dielectrics

HV Isolation Capacitors

Observed: $\gamma(150^{\circ}C) = 3.22cm / MV (for 8um - Stack)$

- HV TDDB Data (γ) Consistent with LV TDDB.
- No change in TDDB physics at high voltage.

R-SOA TDDB-SOA for Gate Oxides

							Reference
				Reference			Field
Gate Oxide	Reference	Reference	Reference	Average	Reference	Reference	Acceleration
Thickness	Area	Temp	Lifetime	Failure Rate	Field	Weibull	Parameter: γ
(Angstrom)	(cm ²)	(°C)	(Hr)	(Fit)	(MV/cm)	Slope: β	(cm/MV)
130 - 200	0.1	105	1.0E+05	10	4	3.0	4.0
50 - 129	0.1	105	1.0E+05	10	5	2.2	4.0
30 - 49	0.1	105	1.0E+05	10	6	2.0	3.6
20 - 29	0.1	105	1.0E+05	10	7	1.5	3.6
12 - 19	0.1	105	1.0E+05	10	7	1.2	3.3

$$AF = \left[\frac{dcyc}{(dcyc)_{ref}}\right] \bullet \left[\frac{Area}{(Area)_{ref}}\right]^{1/\beta} \bullet \exp[\gamma(E_{ox} - (E_{ox})_{ref})]$$

Note: Assumes Good Quality Gate Oxide

R-SOA DEMOS/LDMOS Interconnect TDDB-SOA

TDDB-SOA (Interconnect Spacing):

(Space)_{min} = 80V/(Ebd - 5MV/cm)

NBTI-SOA

Negative Bias Temperature Instability

NBTI-SOA

NBTI-Induced V_{tp} Degradation

- ☐ Most of shift occurs within 1st year of normal product use
- ☐ Can be accelerated to a few hours during HTOL for quick evaluation
- □ NBTI-SOA is presently handled by guard-banding at product level

Single Event Upset (SEU)

Alpha-Particles

Thermal Neutrons

High-Energy Neutrons

Important Reliability Considerations for SEU:

- ☐ Materials selection which are low in radioactive impurities
- ☐ Removal of ¹⁰B from BPSG process
- ☐ SER calculator/simulator
- ☐ Error correction
- ☐ Layouts to reduce multiple-bit errors
- ☐ SEU Induced Latch-up

SEU Impact on HV

Devices:

- ---Hard failures due to SEU induced latch-up
- --- Hard Failures due to TDDB in High-Voltage

Capacitors

Conclusions

- ☐ The business demand for HV components is great
- ☐ HV components, such as DEMOS and LDMOS devices, can be safely integrated with LV CMOS when careful attention is given to Safe Operating Areas:
 - --- e-SOA
 - --- T-SOA
 - --- R-SOA
- ☐ SEU-induced hard failures will need to be investigated more closely for HV devices