Analog Yield Optimization

October 16, 2009
Outline: Analog Yield Optimization

- Key Factors in Analog IC Technology
- Methods to Characterize Variation
- Methods to Optimize Circuit Performance
- Fault Detection and Control to Control Variation
A Sample of Dongbu HiTek’s Analog Portfolio

<table>
<thead>
<tr>
<th>Technology Node</th>
<th>Product Function</th>
<th>Total Chip Area</th>
<th>% of Chip Area</th>
<th>Logic</th>
<th>Memory (eg, OTP, NVM)</th>
<th>Analog</th>
</tr>
</thead>
<tbody>
<tr>
<td>BD350</td>
<td>LED driver IC</td>
<td>2345x2345</td>
<td>23%</td>
<td>0%</td>
<td>0%</td>
<td>77%</td>
</tr>
<tr>
<td></td>
<td>LED driver IC</td>
<td>2938x2938</td>
<td>28%</td>
<td>2.5%</td>
<td>69.5%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PMIC for TV</td>
<td>3828x3681</td>
<td>1.5%</td>
<td>2.5%</td>
<td>96%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PMIC for N/B</td>
<td>3169x3170</td>
<td>1.5%</td>
<td>2.0%</td>
<td>96.5%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Inverter for CCFL</td>
<td>1865x1865</td>
<td>0.5%</td>
<td>0%</td>
<td>99.5%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RF Barcode</td>
<td>4120x3775</td>
<td>87%</td>
<td>0%</td>
<td>13%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Solar Industry</td>
<td>2900x2850</td>
<td>1.5%</td>
<td>0%</td>
<td>100%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Class D Audio Amp</td>
<td>1420x1650</td>
<td>2.5%</td>
<td>0%</td>
<td>97.5%</td>
<td></td>
</tr>
<tr>
<td>BD180</td>
<td>LED Driver</td>
<td>2600x3400</td>
<td>17%</td>
<td>0%</td>
<td>83%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Piezo Driver</td>
<td>2000x1000</td>
<td>33%</td>
<td>0%</td>
<td>67%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Switch Mode Power Supply</td>
<td>870x1100</td>
<td>0%</td>
<td>0%</td>
<td>100%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Level Shifter</td>
<td>1460x1460</td>
<td>0%</td>
<td>0%</td>
<td>100%</td>
<td></td>
</tr>
</tbody>
</table>
Analog Yield Optimization: Problem Statement

- **Analog Products uniquely designed to fit the application**
 - Analog / Digital Area Partition is quite diverse
 - Single Chip solutions still thought to be best for low power / end-user package space

- **Analog Components to interface to real world sensors**
 - High Voltage Transistors
 - Precision capacitance & Resistance
 - Precision transistors to minimize offset voltage

- **Advanced node CMOS used to**
 - Enable digital signal processing to replace some analog circuitry
 - Meet Digital Interface speed / voltage requirements

- **Memory components sometimes needed for trim and calibration**

- **No Analog Yield Penalty Allowed**

- **Advanced CMOS costs make Analog “real estate” expensive**
Key Factors & Strategy for Analog Products

- **High Tolerance Specifications and Accurate Models**
 - Cost Advantage from reduced Die Area
 - Requires Extremely Efficient Characterization in Technology Development
 - Layout Attribute device Dependencies
 - Systematic Process and Lithographic issues with Flow Integration

- **Reliable Production**
 - Cost Advantage from Higher Yields
 - Requires Increasing Tool Level Knowledge, Tool Matching, and Monitoring

- **Minimize Shifts due to Stress in the Field**
 - Customer Satisfaction from Highly Reliable Products
 - Maintain Process stability & conformance to original qualification process distributions

- **Characterization of Device Variation (and the sources)**
- **Minimize Variation through Layout**
- **Minimize Variation in Fabrication**
Sources of variation

Many different sources of variation

Minimizing variability and mitigating its impact requires accurate and efficient characterization of all sources of variation
Classification of Variance

- **Random**: variation in characteristics of devices with identical layout and neighborhood
 - Random Dopant Fluctuations, LER, Across-chip variation, die-to-die variation

- **Systematic**: variation in characteristics of devices with identical dimensions (W, L)
 - Layout and neighborhood effects, deterministic process gradients
Infrastructure to Characterize Variation Effectively

Test Structures

Efficient testing

- Improvement Plans
- Design Enablement
- DFM strategies

Automated data analysis

Integrated Infrastructure:
- Generate
- Test
- Manage & analyze
- Model and apply characterization data
Multiplexed arrays provide pad-efficient test-structures
- Large number of replicates or layout experiments

Array can be placed below pads for even more area-efficiency
- Scribe-line applications
Test Structures (2): Experiments

- Different sizes, layout styles and neighborhood
- Characterize systematic variability from layout

- Large number of replicates
 - Detect systematic differences in presence of variability
 - Variance decomposition

![Diagram showing test structures and graphs](image-url)
Test Structures (3): Placement

- **Scribe-line placement on products**
 - Yield ramp and production monitoring

- **Across-chip placement**
 - ACV effects
 - Technology development and characterization
Leakage Structures (4): Leakage Arrays

- Leakage structures each containing 100’s of devices
 - Many parallel devices in each DUT for fast testing (higher current → less settlement time) and suppress impact of local mismatch
- Each structure has independent S/D/G/W
- Large number of parallel structures for leakage characterization
 - Experiments on layout and neighborhood
- Many leakage paths
 - All need to be characterized and understood
 - Trade-off between leakage and variability
Fast Testing

- Variability characterization ➔ large sample sizes, multiple placement, many experiments

- How can all the measurements be made in reasonable time?

- Parallel testing: many devices at the same time

- Low-resolution “inexpensive” measurement units
Applications: Systematic variation

Gate pitch

![Gate pitch graph](image)

Gate corner rounding

![Gate corner rounding graph](image)

- **Infrastructure enables:**
 - a. Characterization of layout effects
 - b. Characterization of process window

Observed variation: Line shrink by 55nm
Systematic variation: Sample phenomena

<table>
<thead>
<tr>
<th>Layout effect</th>
<th>Typical impact at 65 nm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poly pitch: printability</td>
<td>3-5% change between pitches</td>
</tr>
<tr>
<td>Poly pitch: stress</td>
<td>5-10% change in I\text{drive}</td>
</tr>
<tr>
<td>Poly orientation</td>
<td>2%-7% change in I\text{drive}</td>
</tr>
<tr>
<td>Poly local neighborhood; e.g. center vs. edge gate</td>
<td>1-10% difference between center and edge gates (depends on OPC)</td>
</tr>
<tr>
<td>Poly corner rounding</td>
<td>2-7% decrease in I\text{drive} for worst case</td>
</tr>
<tr>
<td>STI Stress</td>
<td>PMOS I\text{drive}: 5-8%</td>
</tr>
<tr>
<td></td>
<td>NMOS I\text{drive}: 12-18%</td>
</tr>
<tr>
<td>Active corner rounding</td>
<td>1-5% I\text{drive} increase for worst case</td>
</tr>
<tr>
<td>Gate counter-doping</td>
<td>6-10% decrease in PMOS I\text{drive}</td>
</tr>
<tr>
<td>Contact density</td>
<td>3-5% I\text{drive} decrease between dense and spare contacts</td>
</tr>
</tbody>
</table>
Modeling & Design Enablement

- Statistical SPICE models

- Design tools for transistor level design
 - Monte-Carlo Simulation
 - Design of experiments
 - Response surface methodology
 - Application-specific worst-case corners

- SPICE models with switches for layout effects

- Statistical static timing analysis (SSTA)

- Tools and capabilities continue to be limited
Block Level Statistical Design Tools and Flows

- **Suitable for:** Analog, RF, Standard Cell design, SRAM

- **Requirements/Features**
 - Monte-Carlo
 - DOE/RSM methodology
 - Efficient mismatch simulation
 - Sensitivity analysis: process and design variables
 - Application specific worst-case corner extraction

- **Results in best case die area**
Local Variation Does Not Scale

- Lack of T_{ox} scaling with SiON places severe restrictions on local variation (mismatch) improvement
- Efficient infrastructure facilitates technology optimization for local variation minimization

\[\sigma(\Delta(V_{\text{th}})) = \frac{A_{VT}}{\sqrt{WL}} \]
Reduce Variation by Stochastic Analog/RF Design

- For analog design, regular layout styles have always been applied to control systematic mismatch
 - Dummy devices
 - Concentric layout styles

- Devices are oversized to average out random variations
 - Use enough transistor fingers to reduce the uncertainty to acceptable levels
Analog/RF Design in Scaled “Digital” CMOS

- As CMOS continues to scale, there is a diminishing return with using large devices to average out fluctuations.

- Oversizing transistors can potentially cancel any benefit of moving to the next generation technology.

- Example: Pelgrom model analysis of a 65nm differential pair.

- Mismatch improves slowly with increasing transistor size:
 - $\sim 1/\text{sqrt}(\text{area})$.

Published Research by L. Pileggi group at Carnegie Mellon University.
Sizing via Selection of Elements

- Start with regular “fabric” of analog sub-components but “select” only a subset of them for precision matching

- Ex: open-loop amp for pipeline ADC mismatch in 65nm CMOS
 - Select some (~1/2) rather than all subcomponents to minimize offset

<table>
<thead>
<tr>
<th>w/ Configuration</th>
<th>w/o Configuration</th>
<th>σ_{os}</th>
</tr>
</thead>
<tbody>
<tr>
<td># Fingers</td>
<td>W (μm)</td>
<td>W (μm)</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>4.79E+01</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>2.74E+03</td>
</tr>
<tr>
<td>14</td>
<td>14</td>
<td>4.24E+06</td>
</tr>
</tbody>
</table>

Published Research by L. Pileggi group at Carnegie Mellon University
Post-Silicon Element Selection for Mismatch

- Some circuit overhead required to implement post-silicon tuning
 - But with further scaling, post-silicon tuning might be the only way to meet specs and reap the benefits of next gen technology

- Example: Exponential vs. sqrt improvement (Pelgrom model) with area for 65nm open-loop amplifier

Published Research by L. Pileggi group at Carnegie Mellon University

![Diagram of circuit elements]

![Graph showing σos vs. total area]
Control Variation in Fab Process by Fault Detection & Classification

Standard (unsupervised) statistical FDC challenge:

- Amount of process signal data infabs is rapidly increasing
- The more data available, the more likely false alarms

![Diagram of process flow](image)

FDC monitoring system
- 100,000s charts for each module
- Over a million SPC charts in a fab!!
- High false alarms or drastic detuning of the monitors

<table>
<thead>
<tr>
<th>M1-v1 Module Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Num of indicators</td>
</tr>
<tr>
<td>Wafers/month</td>
</tr>
<tr>
<td>Num of obs/hr</td>
</tr>
<tr>
<td>Control limit</td>
</tr>
<tr>
<td>Num of alarms/hr</td>
</tr>
</tbody>
</table>

A 5σ control limit generates

~ 2 alarms / hr / module → Unsupportable

Fundamental issues:

1. Control is not based on yield: hence no systematic way to prioritize FDC monitors (to critical few) based on product & cost impact

2. Poor infrastructure: FDC and YMS in separate databases without alignment from process point of view, and hence not efficiently.
Model building requires an integration of series of data operations

Model Output identifies key equipment “indicators” (derived from time-based equipment sensor signals such as temp, pressure, power, flow rate, etc)

Component parameters are modeled as function of reduced set of key indicators
Example 1: Parametric Models – RTA Impact

- Large within-wafer PMOS V_{th} variation seen by client

- YA-FDC modeling identified the key yield-critical parameter

- V_{th} variation was caused by stabilization temperature, not spike anneal as expected

- Out of multiple RTA control zones, YA model identified a particular zone as the problem source

- Problem identification was followed by recipe optimization that eliminated the issue
Example 2: BEOL Via Rc

Via Rc in Drift
65nm mass production line

- Rc prediction model using key indicators shows good predictability

<table>
<thead>
<tr>
<th>PVDChamberDcPowerActual-TaN/Ta depositon-stepDuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>PVDChamberDCVoltage-TaN/Ta depositon-mean</td>
</tr>
<tr>
<td>PVDChamberDcPowerActual-Ta depositon-stepDuration</td>
</tr>
<tr>
<td>PVDChamberDCVoltage-Ta depositon-mean</td>
</tr>
</tbody>
</table>
Example 2: BEOL Via Rc (Cont’)

- Online model deployment
- Useful for “tool matching” to reduce variation introduced by multiple tools

- Understanding and control of contact resistances is one key for minimizing device shifts in the field
Example 3: BEOL ILD Thickness Control

- In this case the YA-FDC model is build to understand the variation of SiC thickness in BEOL (a backend dielectric).

- Since FDC data is available on EVERY wafer, it is able to clearly capture wafer-to-wafer variation (and understand its root cause), which is difficult from normal metrology measurement (which is on 2~3 wafer per lot).

- Can be extended to control BEOL components built from Metal and dielectric layers (caps & indictors).
Summary

→ Take advantage of advanced CMOS nodes without “analog” penalty even when adding components

→ Characterization, Reduction, & Control of Variation is Key

- Deployment of High volume Characterization Infrastructure to facilitate High Precision modeling and PDKs

- Use of advanced “fabric” layout and circuit techniques that are now enabled by advanced node CMOS

- Utilize “Yield Aware FDC” Fabrication Line equipment Modeling Strategies