

Analog Yield Optimization

October 16, 2009

Outline: Analog Yield Optimization

- Key Factors in Analog IC Technology
- Methods to Characterize Variation
- Methods to Optimize Circuit Performance
- Fault Detection and Control to Control Variation

A Sample of Dongbu HiTek's Analog Portfolio

Technology Node	Product Function	Total Chip Area	% of Chip Area		
			Logic	Memory (eg, OTP, NVM)	Analog
BD350	LED driver IC	2345x2345	23%	0%	77%
	LED driver IC	2938x2938	28%	2.5%	69.5%
	PMIC for TV	3828x3681	1.5%	2.5%	96%
	PMIC for N/B	3169x3170	1.5%	2.0%	96.5%
	Inverter for CCFL	1865x1865	0.5%	0%	99.5%
	RF Barcode	4120x3775	87%	0%	13%
	Solar Industry	2900x2850	1.5%	0%	100%
	Class D Audio Amp	1420x1650	2.5%	0%	97.5%
BD180	LED Driver	2600x3400	17%	0%	83%
	Piezo Driver	2000x1000	33%	0%	67%
	Switch Mode Power Supply	870x1100	0%	0%	100%
	Level Shifter	1460x1460	0%	0%	100%

Analog Yield Optimization: Problem Statement

- Analog Products uniquely designed to fit the application
 - Analog / Digital Area Partition is quite diverse
 - Single Chip solutions still thought to be best for low power / end-user package space
- Analog Components to interface to real world sensors
 - High Voltage Transistors
 - Precision capacitance & Resistance
 - Precision transistors to minimize offset voltage
- Advanced node CMOS used to
 - Enable digital signal processing to replace some analog circuitry
 - Meet Digital Interface speed / voltage requirements
- Memory components sometimes needed for trim and calibration

- No Analog Yield Penalty Allowed
- Advanced CMOS costs make Analog "real estate" expensive

Key Factors & Strategy for Analog Products

High Tolerance Specifications and Accurate Models

- Cost Advantage from reduced Die Area
- Requires Extremely Efficient Characterization in Technology Development
 - Layout Attribute device Dependencies
 - Systematic Process and Lithographic issues with Flow Integration

Reliable Production

- Cost Advantage from Higher Yields
- Requires Increasing Tool Level Knowledge, Tool Matching, and Monitoring

Minimize Shifts due to Stress in the Field

- Customer Satisfaction from Highly Reliable Products
- Maintain Process stability & conformance to original qualification process distributions

- Characterization of Device Variation (and the sources)
- Minimize Variation through Layout
- Minimize Variation in Fabrication

Sources of variation

Decomposition of random variation

Variation from layout effects

- Many different sources of variation
- Minimizing variability and mitigating its impact requires accurate and efficient characterization of all sources of variation

Classification of Variance

- Random: variation in characteristics of devices with identical layout and neighborhood
 - Random Dopant Fluctuations, LER, Across-chip variation, die-to-die variation
- Systematic: variation in characteristics of devices with identical dimensions (W, L)
 - Layout and neighborhood effects, deterministic process gradients

Infrastructure to Characterize Variation Effectively

- Integrated
 Infrastructure:
 - Generate
 - Test
 - Manage& analyze
 - Model and apply characterization data

Test Structures (1)

- Multiplexed arrays provide pad-efficient test-structures
 - Large number of replicates or layout experiments
- Array can be placed below pads for even more area-efficiency
 - Scribe-line applications

Test Structures (2): Experiments

- Different sizes, layout styles and neighborhood
- Characterize systematic variability from layout

- Large number of replicates
 - Detect systematic differences in presence of variability
 - Variance decomposition

Test Structures (3): Placement

- Scribe-line placement on products
 - Yield ramp and production monitoring

- Across-chip placement
 - ACV effects
 - Technology development and characterization

Leakage Structures (4): Leakage Arrays

- Leakage structures each containing 100's of devices
 - Many parallel devices in each DUT for fast testing (higher current → less settlement time) and suppress impact of local mismatch
- Each structure has independent S/D/G/W
- Large number of parallel structures for leakage characterization
 - Experiments on layout and neighborhood
- Many leakage paths
 - All need to be characterized and understood
 - Trade-off between leakage and variability

Fast Testing

■ Variability characterization → large sample sizes, multiple placement, many experiments

How can all the measurements be made in reasonable time?

■ Parallel testing: many devices at the same time

Low-resolution "inexpensive" measurement units

Applications: Systematic variation

Gate pitch

Gate corner rounding

Infrastructure enables:

- a. Characterization of layout effects
- b. Characterization of process window

Systematic variation: Sample phenomena

Layout effect	Typical impact at 65 nm		
Poly pitch: printability	3-5% change between pitches		
Poly pitch: stress	5-10% change in Idrive		
Poly orientation	2%-7% change in Idrive		
Poly local neighborhood; e.g. center vs. edge gate	1-10% difference between center and edge gates (depends on OPC)		
Poly corner rounding	2-7% decrease in Idrive for worst case		
STI Stress	PMOS Idrive: 5-8% NMOS Idrive: 12-18%		
Active corner rounding	1-5% Idrive increase for worst case		
Gate counter-doping	6-10% decrease in PMOS Idrive		
Contact density	3-5% Idrive decrease between dense and spare contacts		

Modeling & Design Enablement

- Statistical SPICE models
- Design tools for transistor level design
 - Monte-Carlo Simulation
 - Design of experiments
 - Response surface methodology
 - Application-specific worst-case corners
- SPICE models with switches for layout effects
- Statistical static timing analysis (SSTA)
- Tools and capabilities continue to be limited

ld_n

- Etest
- MC sim
- X 4.5 σ corners
- + S, F corners

Block Level Statistical Design Tools and Flows

- Suitable for: Analog, RF, Standard Cell design, SRAM
- Requirements/Features
 - Monte-Carlo
 - DOE/RSM methodology
 - Efficient mismatch simulation
 - Sensitivity analysis: process and design variables
 - Application specific worst-case corner extraction
- Results in best case die area

Local Variation Does Not Scale

$$\sigma(\Delta(Vth)) = \frac{A_{VT}}{\sqrt{WL}}$$

- Lack of T_{ox} scaling with SiON places severe restrictions on local variation (mismatch) improvement
- Efficient infrastructure facilitates technology optimization for local variation minimization

Reduce Variation by Stochastic Analog/RF Design

- For analog design, regular layout styles have always been applied to control systematic mismatch
 - Dummy devices
 - Concentric layout styles

- Devices are oversized to average out random variations
 - Use enough transistor fingers to reduce the uncertainty to acceptable levels

Analog/RF Design in Scaled "Digital" CMOS

- As CMOS continues to scale, there is a diminishing return with using large devices to average out fluctuations
- Oversizing transistors can potentially cancel any benefit of moving to the next generation technology
- Example: Pelgrom model analysis of a 65nm differential pair
- Mismatch improves slowly with increasing transistor size
 - ~1/sqrt(area)

Published Research by L. Pileggi group at Carnegie Mellon University

Sizing via Selection of Elements

Start with regular "fabric" of analog sub-components but "select" only a subset of them for precision matching

- Ex: open-loop amp for pipeline ADC mismatch in 65nm CMOS
 - Select some (~1/2) rather than all subcomponents to minimize offset

w/ Confi	guration	w/o Configuration	$\sigma_{ m os}$	
# Fingers	W (µm)	W (µm)		
1	1	1	11.8mV	
4	4	4.79E+01	1.71mV	
8	8	2.74E+03	0.226mV	
14	14	4.24E+06	5.75μV	

Published Research by L. Pileggi group at Carnegie Mellon University

Post-Silicon Element Selection for Mismatch

- Some circuit overhead required to implement post-silicon tuning
 - But with further scaling, post-silicon tuning might be the only way to meet specs and reap the benefits of next gen technology
- Example: Exponential vs. sqrt improvement (Pelgrom model) with area for 65nm open-loop amplifier

Published Research by L. Pileggi group at Carnegie Mellon University

Control Variation in Fab Process by Fault Detection & Classification

Standard (unsupervised) statistical FDC challenge:

- Amount of process signal data in fabs is rapidly increasing
- The more data available, the more likely false alarms

■ Fundamental issues :

- 1. Control is not based on yield : hence no systematic way to prioritize FDC monitors (to critical few) based on product & cost impact
- 2. Poor infrastructure: FDC and YMS in separate databases without alignment from process point of view, and hence not efficiently.

YA-FDC Modeling Work Flow

- Model building requires an integration of series of data operations
- Model Output identifies key equipment "indicators" (derived from time-based equipment sensor signals such as temp, pressure, power, flow rate, etc)
- Component parameters are modeled as function of reduced set of key indicators

Example 1 : Parametric Models – RTA Impact

■ Large within-wafer PMOS V_{th} variation seen by client

- YA-FDC modeling identified the key yield-critical parameter
- V_{th} variation was caused by stabilization temperature, not spike anneal as expected
- Out of multiple RTA control zones, YA model identified a particular zone as the problem source

■ Problem identification was followed by recipe optimization that eliminated the issue

Increase Your Yield

Example 2 : BEOL Via Rc

Via Rc in Drift 65nm mass production line

Rc prediction model using key indicators shows good predictability

PVDChamberDcPowerActual-TaN/Ta depositon-stepDuration PVDChamberDCVoltage-TaN/Ta depositon-mean

PVDChamberDcPowerActual-Ta depositon-stepDuration

PVDChamberDCVoltage-Ta depositon-mean

Example 2 : BEOL Via Rc (Cont')

- Online model deployment
- Useful for "tool matching" to reduce variation introduced by multiple tools

 Understanding and control of contact resistances is one key for minimizing device shifts in the field

Example 3: BEOL ILD Thickness Control

Wafer ID

Wafer ID

- In this case the YA-FDC model is build to understand the variation of SiC thickness in BEOL (a backend dielectric)
- Since FDC data is available on EVERY wafer, it is able to clearly capture wafer-to-wafer variation (and understand its root cause), which is difficult from normal metrology measurement (which is on 2~3 wafer per lot)
- Can be extended to control BEOL components built from Metal and dielectric layers (caps & indictors)

Summary

- → Take advantage of advanced CMOS nodes without "analog" penalty even when adding components
- → Characterization, Reduction, & Control of Variation is Key
- Deployment of High volume Characterization Infrastructure to facilitate High Precision modeling and PDKs
- Use of advanced "fabric" layout and circuit techniques that are now enabled by advanced node CMOS
- Utilize "Yield Aware FDC" Fabrication Line equipment Modeling Strategies

