Delta Sigma ADC and DAC for Hi-Fi Audio, and next trend

Koichi Hamashita Asahi-Kasei Microdevices Corp.

Agenda

- Introduction: role of ADC &DAC
- Why Delta Sigma for Hi-Fi Audio ?
- Delta Sigma Technology for Audio:
 Key points from AKM history & products
- Next trend: wide band DSM for RF application
 Key points from today's R&D
- Conclusions

Analog: between Real & IT digital-world

Real world

Human: by ear, by eye

Measuring: weight, velocity, magnetism, acceleration

Analog Players

Microphone, CCD/CIS -> Amp/Filter -> ADC

<- Amp/Filter <- DAC Speaker, V-monitor

PLL, Xtal, TCXO: for clocking

Digital Players

D-Memory: CD, DVD, HD, Flash, DSP:

Echo/Noise cancel voice recognition sound processing (Car, Theater, Game) image processing (Photo, Video, TV)

IT world

Audio, Movie, Video, Photo, Voice,

Data transfer via RF/Fiber

Analog vs. Digital Signal

- Analog Signal = Continuous Time signal in Real World get small signal, and reject environment noise

 Digital Signal = Discrete Time & Quantized signal in Digital World Signal Band Width (SBW) = fs/2 (fs= sampling rate)

 Quantization noise (Qn): SQNR = (6N+1.8)dB (N=bit num.)

 Main Players in Analog area,
- Sensor: pick up signal from real world
- OPamp, Filter, AGC: amplify or filtering
- ADC, DAC: interface between Analog and Digital
- TCXO, PLL, VCXO: generate sampling clocks

ADC & DAC for RF communication

Communication of data(digital) via RF career (fc) modulate data --> transfer on RF ---> de-modulate Transferred wave = again, continuous time wave Players in RF transceiver,

Transmit: DAC, IF-Filter, Up-Mixer, Driver/Power-AMP

Receive: LNA, SAW, Down-Mixer, IF-Filter, AGC, ADC

Both: TCXO, PLL-synthesizer (VCO), LO-buffer

Wideband ADC, DAC:

WCDMA = 2MHz, LTE = up to 20MHz

Agenda

•

- Why Delta Sigma for Hi-Fi Audio ?
- Delta Sigma Technology for Audio:
 Key points from AKM history & products
- Next trend: wide band DSM for RF application
- Key points from today's R&D
- Conclusions

Why Delta Sigma for Audio: ADC Architectures

Delta Sigma: >16bit accuracy, closed loop Noise shaping, high Oversampling Ratio (OSR) --> high accuracy with a few bit, > 90dB with 1bit --> Narrow Signal Band Width (SBW), (1/OSR)*fos/2 --> relaxed Anti-Aliasing Filter (AAF) by high OSR **Digital Decimation Filter**

--> reject Out-of-Band Noise, generate 16bit PCM

Linear performance w/o calibration

- Flash or Pipeline: High speed, ENOB = 8 12bit, open loop
 - (a) Flash (1 stage) : 2^n Comp --> up to 8bit
 - (b) Pipeline (N stage) : N*(1 OP + 2 Comp)Mismatch & Gain error limits ENOB up to 12bit direction for Higher fs --> 250M to 500MHz
- SAR: Low Cost, Mid-speed, ENOB = 12 16bit(Cal), open loop need N cycle for N bit conversion --> fs = fconv /N 1 Comp + N bit DAC ---> Low cost for 12bit, but expensive for 16bit

Why Delta Sigma for Audio: DAC Architectures

Delta Sigma: >16bit accuracy

```
Digital Delta Sigma Modulator + DAC (a few bits) + Analog post filter Noise shaping, high Oversampling Ratio (OSR)
```

- --> high accuracy with a few bit, > 90dB with 1bit
- --> 1 bit DAC is perfectly linear (no mismatch)

or Multi-bit (few bits) with DWA (mismatch is averaged out)

Digital Interpolation Filter

- --> reject Mirrors in digital domain, relax Analog post filter
- Current steering: High speed, direct current drive

2ⁿ Current Cells (same to FLASH ADC)

- --> component mismatch limits ENOB < 12bit
- R-rudder: Low speed (large R will limit speed)

 2^n Resistor tap, total R is large (ex, $2^{16} = 65,536$) --> speed limit R-tap mismatch ---> Laser trimmed, high cost

Agenda

•

•

- Delta Sigma Technology for Audio:
 Key points from AKM history & products
- Next trend: wide band DSM for RF application
 Key points from today's R&D
- Conclusions

AKM products

More than 20 years, in Delta Sigma ADC/DAC/CODEC & DSP Leader supplier in Hi-Fi Audio market, from Low-End to High-End

- LOW --> Portable, TV, PC, Game, Phone : 90dB, 16bit, fs=48kHz
 Low Power, Low Voltage, Low Cost,
 Multi-function CODEC (Mic, SPK, HP, Equalizer, noise cancel)
- MID --> Home, Car: 100 to 110dB, 20bit, fs= 48 to 192kHz
 High precision with minimum cost,
 2 to 8 channels for Home Theater, Car surround
- •High --> Professional: 120 to 123dB, 24 to 32bit, fs= 48 to 192KHz Studio Recording Mixer, Musical Instruments, Measurement
- DSP+CODEC: 90 to 100dB, multi-function
 Dolby surround, Hands free talk(noise/echo cancel)

AKM Technology History: for Audio band

- 1bit 4th order ADC (1988,AES) : 96dB, 2chip (SE)
- 1bit 5th order DAC (1990,AES): 98dB, 2chip (SE)
- 1bit 5th order ADC (1992,AES): 110dB, 2chip (FD)
- 1bit 4th order CODEC (1993,CICC): 90dB, 1 chip (FD)
- 2-2 cascade 4th order ADC (1996,CICC): 111dB, 1chip
- 1.5V, 4mW, 4bit 3rd order DAC (1998,ISSCC): 90dB
- 5bit, 3rd order DAC (1999,ISSCC) : 120dB, 1chip (FD)
- 2-1-1, 4bit, 8x-OSR ADC (2000,ISSCC): 90dB, 1.2M_BW
- 0.6V, 2-2 cascade, ADC (2005,ISSCC): 82dB, switched RC
- 0.8V, 88dB DAC with HP-driver (2006,VLSI)

Principle of delta sigma ADC (Single-loop, 1-bit)

 $(\Delta\Sigma \text{ output})$

(after decimation)

4th order, 1bit, Single-loop (1988, AES)

4th_order, first in WW, AK5326, SNR=96dBA (A-weight), SNDR=93dB
multi Feed-Forward (a1 to a4) --> stable close loop in 4th order
insert Zero (b0) in Signal Band --> Lower Quantization noise in SB
1bit output (1 or 0) --> inherently Linear
64 times oversampling --> no need of Anti-alias filter (until 3MHz)
3um process = ±5V

4th order, 1bit, Single-loop

1 bit output Spectrum, by Simulation

Fig. 6. Simulated modulator output spectrum

Fig. 7. Expanded simulated modulator output spectrum

After Digital Filter (1/64 decimation, 16bit PCM output), measured SNR= 96dBA, SNDR=93dB

Single chip Stereo CODEC, 4th order (1993,CICC)

AK4501 (ADC=90dBA, DAC=90dBA), for portable Audio, 5V single(1.6um)

Total Block Diagram

Fully differential Analog DSM

- ✓ cancel out digital noise & even harmonics
- \checkmark S/N = +3dB up (S=+6dB, N=+3dB)
- ✓ FB-DAC : simple selection of +/-path

Analog Delta-Sigma Modulator

Digital 4th-DSM, Analog 1b-DAC + Post Filter

4th-order Digital Delta Sigma

- ✓ Input = 64fs_16bit PCM
- ✓ Output = 64fs_1bit PDM
- ✓ Integrators --> ACCs
- ✓ Time Shared by 2 channel
- ✓ Noise shaping in digital (determine SQNR)

Analog 1b-DAC, Post filter

- ✓ Fully Differential
- ✓ 1b-DAC = pass selection
- ✓ SC --> Jitter insensitive
- ✓ Reduce Out of band Qn
- ✓ Dominant Analog performance (kT/C,..)

5th order, 1bit, Single-loop (1992,AES)

5th_order, 2 zeros in signal band, Fully Differential, 3um (+/-5V)

AK5389 (18bit): SNR =106dBA, SNDR= 102dB AK5390 (20bit): SNR=110dBA, SNDR=104dB

Fig. 4a Switched-Capacitor Modulator

5th order, 1bit, Single-loop

1bit output spectrum, by Simulation

Fig. 3a Simulated Modulator Output Spectrum

Fig. 3b Simulated Modulator Output Spectrum (expanded)

After Digital Filter, 18bit, measured

Fig. 10a 18-Bit A/D converter (full scale input)

Fig. 10b 18-Bit A/D converter (-60dB input)

2-2 Cascaded ADC, 4th order (1996,CICC)

Stability: multi-stage (DS-loop) is cascaded, each can be up to 2nd-order Stage outputs (Y1, Y2) is summed in NCL, so as to get final output Y ---> Q1 is cancelled, Q2 remains with high order noise shaping LFB in 1st stage --> no overload w/o Gain scaling --> more SNR, DR Noise leakage (Q1) is reduced by 2nd-order --> more mismatch tolerance

Noise Cancel in digital

Block diagram of 2-2 cascaded $\Delta \Sigma M$ with LFB.

2-2 Cascaded ADC: DR=110dB

1.5kHz input @fs=48kHz

Chip (0.7um DPDM)

High End ADC : 123dBA --> 127dBA

AK5394A: SNR,DR =123dBA, S/N+D= 110dB, fs= 54k(x1) - 216kHz (x4)@5V Cascade + Multi-bit Quantizer + DWA

Next Trial ---> up to 127dBA

120dB multi-bit DAC (1999,ISSCC)

Figure 8.4.1: Audio DAC block diagram.

OSR= x64 or x128
3rd order, 31 value, DWA
--> average mismatch
2 tap FIR in SC domain
--> reduce out-of band Qn

AK439X series : SNR,DR =120 - 123dBA, S/N+D= 100 - 105dB, fs= 54k(x1) - 216kHz (x4)

5V single

120dB multi-bit DAC: performance & Photo

1kHz, -60dB, @fs=48kHz (SBW=20kHz)

SNDR vs. Input level at 1kHz (fs=48kHz)

20kHz, -60dB, @fs=192kHz (SBW=80kHz)

Chip (0.5um DPDM)

Conclusion(1): design points for Audio band

```
Loop topology:
   Single loop --> need care for Stability, insensitive to mismatch
   Cascade loop --> basically Stable, sensitive to mismatch
Quantization bit number:
             --> Inherently linear, Total_Qn = -7.8dB, need high Order or OSR
   multi-bit --> need DWA, Total Qn = -(6n+1.8)dB, higher SQNR, DR
OSR consideration:
   High OSR --> need high speed in SC settling, Comp, Digital
   kT/C noise --> reduced to 1/OSR (ex., if OSR=64, -18dB reduction)
In Band noise:
   Qn is low enough --> Analog noise is dominant (kT/C, 1/f, Thermal)
Out of Band noise:
   ADC: Digital Decimation Filter can reject perfectly
   DAC: not Audible, but should be reduced by Analog Post Filter
for ADC \Rightarrow every candidate is possible, select depend on purpose
for DAC ⇒ Single loop, multi-bit, low order is better
```

Agenda

•

lacktriangle

•

- Next trend: wide band DSM for RF application
 Key points from today's R&D
- Conclusions

wideband Delta Sigma ADC for RF application

ADC is Key for Receiver of Cell phone (GSM, CDMA, LTE), DTV, WLAN, etc.

Signal Band = 2MHz(WCDMA), 6MHz(DTV), 10MHz(WLAN), 20MHz (LTE)

DR = 50 - 75dB, SFDR = 65 - 90dB <--- depend on system req.

Wideband DS-ADC with high DR (70 to 80dB):

Blocker can be rejected by Digital Filter ---> omit IF-Filter, relax AGC easy system design, Low power/cost, more reliability ...

How to design Wide-band Delta Sigma?

... Basically Narrow-band by oversampling !!

Approaches for wideband Delta Sigma ADC

- > Trial for Lower OSR: x64 ---> x16 to x8LTE = 20MHz, fos = 20*2*8 = 320MHz (@OSR=8) --> can use 0.18um
- In band Thermal noise : $20MHz / 20kHz = 1000 = 2^{10} --> 30dB \text{ larger than Audio band}$
- Key points from today's R&D :
 - Continuous Time (CT): including AAF, no fs tracking, jitter sensitive
 - 1) Gm-C type in single loop: jitter tolerance, SBW=2MHz
 - 2) Calibration tech in Cascaded: coefficient matching, SBW=18MHz
 - Switched Capacitor (SC): relaxed AAF, fs tracking, Jitter in-sensitive
 - 3) Noise couple & Time interleave: extra order, Half clock, SBW=4.2MHz
 - 4) Double Sampling: OSR= like x4 (real=x8), SBW=20MHz(a), 10MHz(b)

Other Wideband $\Delta\Sigma$ ADCs from CICC'11(Sep):

1) Gm-C type CT-DSM, 5th-single loop (Aiba, JSSCC'09)

DR=71dB, SBW=2MHz, OSR=32, fos=128MHz --> for WCDMA
CT loop filter --> work as AAF in front of Quantizer
Gm-C Integrators --> High speed, but VPT dependent
SC-DAC + R --> jitter insensitive (Charge transfer is small @final of Ts)
Replica DAC --> reduce VPT dependency of Gm-C, DAC-R

1) Gm-C type CT-DSM: DR=71dB, SNDR=68dB

30

2) Calibration in Cascaded CT-DSM (Kamiishi, CICC'09)

- ➤ SBW=18MHz, OSR=10, fos=360MHz --> 2-1-1 cascade with 4bit Quantizer
- Calibration for Time Constant of Gm-C, insert Cal_tone before 1st Quantizer, this works as same as Q1, change Cap-value until Cal-tone is vanished on Dout (after NCL), then, Analog & Digital coefficients are matched so as to cancel out Q1 leakage

Fig. 5. 2-1-1 cascaded CT ΔΣ modulator and time-constant calibration blocks.

3) Noise Couple & Time Interleave in SC-DSM (K.Lee, ISSCC'08)

Wide SBW =4.2MHz, OSR=24, fos=200MHz, Quantizer= 15 level
Time Interleaving (use both clock edge) --> f_clock = 100MHz (=fos/2)

★ SC settling requirement can be relaxed (5ns --> 10ns)
Noise Coupling add extra (1-z^{-1/2}) in NTF --> 2nd + 1st = 3rd order

Noise Couple & Time Interleave: SNDR=79dB

SNDR =79dB, SBW= 4.2MHz, SFDR= 101dB, 3rd order (60dB/dec) Power=28mW, FOM=0.48pJ/conv*step, @0.18um

4) Double sampling SC-DSM

Double sampling ---> use OPamp 2 times per clock
Input SC is separate 2 Caps --> mismatch will be on fos/2, DF can cut off
no alias-down noise in signal path by AAF
FB-DAC is same cap --> mismatch of 2 Cap will be aliased down from fos/2

4a) Double sampling in Single-loop (J.Chae, CICC'10)

```
3rd order, single loop, 15 level, @0.18um

SBW=20MHz, OSR=8, fos=320MHz (f_clock=160MHz)

peak SNDR =63dB, DR=64dB, ---> not enough

Power=16mW, FOM=0.35pJ/conv*step
```


Fig. 7 Power spectral density with a -3.3dBFS sine wave input.

4b) Double sampling in 2-2 cascade (S.Lee, CICC'11)

Double sampling tech. in 2-2 cascaded SC-DSM:

SBW=10MHz, OSR=8, fos =160MHz (f_clock =80MHz)

SNDR =73.8dB, SFDR = 90dB

Power = 22mW, FOM=0.27pJ/conv*step, @0.18um

5) Wideband ΔΣADCs from CICC'11(Sep.)

6 of 7 papers in $\Delta\Sigma$ session were wideband ADC, nice design & topology were presented, but FOM is almost same w/o depend on process node.

- (SC) OPamp stage-sharing in 2-2 cascade, @0.13um
 SBW=5MHz, OSR=13, SNDR=75dB, 18mW, FOM=0.4pJ
- (SC) Comparator based (ZCBC), 1-1-1-1 MASH, @65nm SBW=2.5MHz, OSR=8, SNDR=70dB, 4mW, FOM=0.27pJ
- ➤ (SC) VCO-based Quantizer for 2nd stage, 1-1 MASH, @0.13um SBW=4MHz, OSR=12.5, SNDR=77dB, 14mW, FOM=0.30pJ
- (CT) 4th-order single-loop, 4bit, RC-Integrator, @0.18um SBW=32MHz, OSR=25, SNDR=65dB, 47mW, FOM=1.0pJ
- ► (LC) RF direct Band pass, fc=900MHz, fs=3.6GHz, @0.13um SBW=28MHz, OSR=64, SNDR=50dB, 15mW, FOM=1.0pJ
 ☆ can omit RF mixer, by digital mixing after ADC!

Conclusion(2): wideband DS-ADC for RF

CT vs. SC (Discrete Time):

started from CT type, using Gm-C Integrator

- --> moving to RC Integrator with developing of wideband OPamp SC type run after, covering 5-20MHz band, increasing SNDR
 - --> more accurate, fs-tracking for multiple use
 - --> challenging for Lower OSR, using many type of circuit tech. (already proven in conventional SC-circuit area)

Delta Sigma ADC vs. Pipeline ADC:

Pipeline: DR= 50 - 60dB, need high order IF-Filter and AGC

Delta Sigma: DR= 70 - 80dB, FOM=0.3PJ, Blocker rejection in Digital

RF direct Band-pass Delta Sigma ADC:

omit RF mixer --> attractive for future RF

LC resonator --> need tuning, difficult use for fs tracking system

Delta Sigma is now on R&D for >5MHz, but already feasible for <2MHz, change RX architecture for high-performance, low-power & productivity

Final Conclusion

Final Conclusion

- ADC/DAC is key Interface between Real world and IT/Digital world
- Audio-band Delta Sigma was first introduced in 1988, with continuous tech-challenge, leading Digital Audio Market for better human life.
- Wide-band Delta Sigma ADC will make next innovation in RF application, and will contribute for better communication in World Wide.
- Fine process (< 90n) is attractive for digital & mm-wave, but leaky and low Voltage. For high performance Analog, small-leakage, high-voltage, component mismatch is more important.

 Designer's wisdom shall cover the speed drawback of old process.
- AKM designer will continue technology challenge for WW human life.

Thank you for your Attention!

Wonderful Sound World

for
Future RF
Communication

Asahi KASEI Microdevices Corp.

Asahi**KASEI** GROUP