

Dongbu's Analog Process Technology Overview

Lou N. Hutter, SVP

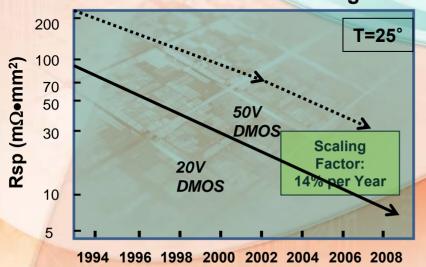
GM, Analog Foundry Business Unit Dongbu HiTek Semiconductor 2009 Analog Leaders Forum

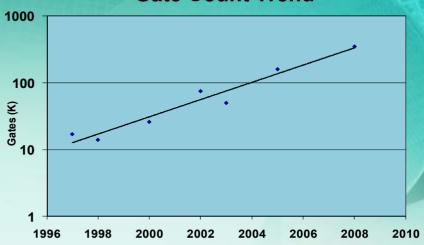
Current Situation

Digital

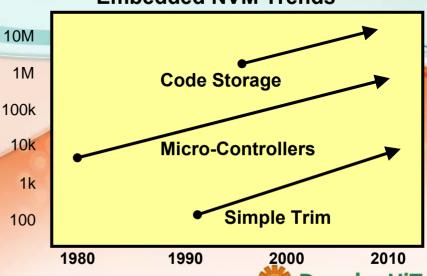
- Process Technology Follows ITRS Roadmap
- Major Process Differentiator is Timing & Ramp Execution
- Product Differentiation Done via System/Design IP
- Technology Development is Mainly by Foundries

Analog/Power


- No ITRS Roadmap for Process Technology
- Process Technology Remains a Critical IP
- High Level of Process/Product Collaboration for New Product Development
- Historically Dominated by IDMs, but Gap is Narrowing vs. Foundries


Trends

- 2 Opposing Trends:
 - Analog/Power SOCs
 - Performance Differentiation
- Modest to No Voltage Scaling
- Digital Content Increasing
- NVM Content Increasing
- More Power On-Chip



Gate Count Trend

Embedded NVM Trends

Semiconductor Business

Analog Technology Space

3Q08

Density Analog CMOS:

- Logic & Analog CMOS
- Low VT CMOS Option
- Poly Resistor, MIM Cap
- •DECMOS
- Focus on Density

Power BiCMOS:

- •Bipolar, CMOS, and LDMOS
- Logic & Analog CMOS
- •HV (60V) and LV (20V) Flavors
- •LDMOS, DECMOS
- Poly Resistor, MIM Cap

Performance Analog CMOS:

- Logic & Analog CMOS
- Low 1/f Noise
- Thin Film Resistor
- Low-DA MIM Capacitor
- Focus on Performance

High-Speed BiCMOS:

- •NPN or PNP Vertical Bipolar
- Logic & Analog CMOS
- Focus on Performance
- •TF Resistor, MIM Capacitor
- SiGe Option

Analog Technology Space 4Q09 / 1Q10

Density Analog CMOS:

- Logic & Analog CMOS
- Low VT CMOS Option
- Poly Resistor, MIM Cap
- DECMOS
- Focus on Density

Power BiCMOS:

- •Bipolar, CMOS, and LDMOS
- Logic & Analog CMOS
- •HV (60V) and LV (20V) Flavors
- •LDMOS, DECMOS
- Poly Resistor, MIM Cap

Performance Analog CMOS:

- Logic & Analog CMOS
- Focus on Performance
- Low 1/f Noise
- •Thin Film Resistor
- Low-DA MIM Capacitor

High-Speed BiCMOS:

- •NPN or PNP Vertical Bipolar
- Logic & Analog CMOS
- Focus on Performance
- •TF Resistor, MIM Capacitor
- SiGe Option

0.18um BCDMOS Technologies

1 Poly, 6 Metal

Gox: 30 & 125 Å

• M1 Pitch: 0.46 μm

Thick Metal: Al or Cu

CMOS: 1.8V & 5V

Gate Density: 88K gt/mm²

CMOS: Isolated

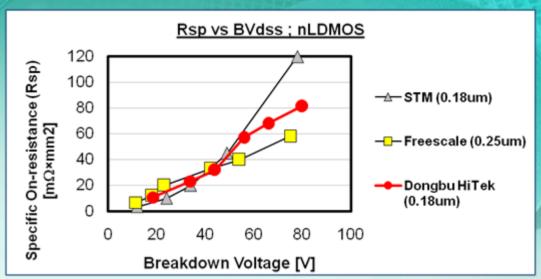
CMOS: Low-V_T

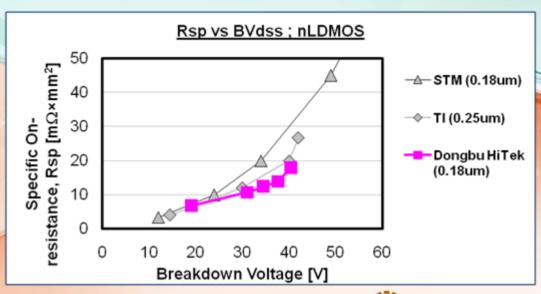
NLDMOS: 7V – 30V (60V)

PLDMOS: 7V – 30V (60V)

DECMOS: 7V – 30V (65V)

NPN: 10V


RESISTOR: Poly 215, 2K Ω/sq


• CAPACITOR: MIM 2 fF/µm²

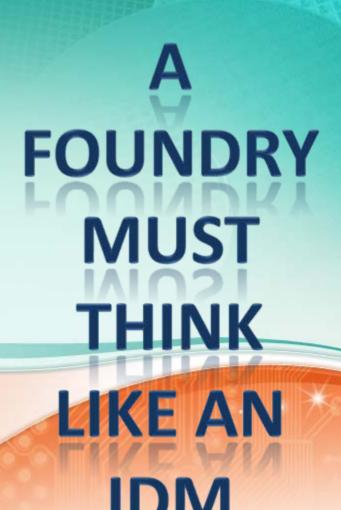
Schottky Diode

• NVM: E²PROM, OTP, Fuse

PDK: Cadence, Mentor

The Analog/Power Mindset

Silicon Accuracy


- Rich Component Set
- Tight Parametric Distributions
- Exhaustive Device Characterization
- 2nd Order Effects Noise, Matching...

Simulation Accuracy

- Thorough PDK That Works
- SPICE Models That Match Silicon
- Robust ESD Solutions
- Proven IP Blocks for Key Functions

Manufacturability

- Electrical Failure Analysis, ESD Reviews
- Zero Defects, DPPM Focus
- Flexibility Handle Unusual Requests
- Eco-System

Conclusions

- Significant Additions to Technology Portfolio in 2009
- Aggressive Technologies, at IDM Performance Levels
- New, Improved Processes and Capabilities in 2010
- World-Class 'Eco-System' to Enable Customers
- Totally Focused on Analog
- Our Vision:

'The Most Respected Analog Foundry in the Industry'

