Trends in Analog/Mixed-Signal
Products & Technology and
Challenges for Design

Tim Kalthoff
Chief Technologist, High Performance Analog Division
October 2012

Tl Information — Selective Disclosure {'PE’S‘ASTRUMENTS




Symbiotic Society Drivers For The Future

Personal and Health Technology

Smart Buildings and Infrastructure

Energy Efficiency

— Generation (Solar, Distributed Sources)

— Consumption and Management
* (Lighting, Motor Control)

Safety and Security

— Transportation

Tied together by the Cloud

— Mobile is the Personal Hub (maybe

stimulation

*Health

Cochlear|
implant

N
<;~

Future
Office
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TERNET OF “THINGS”
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Personal/Health
Technology

* Body Area Network
* Low Power Sensors
* Analog

* Gbps Data Comms
*RF

» Data Analysis

* Energy Harvesting

* Implantables

What I1s nheeded?

Structure &
Environment
monitoring

* Low Power Sensors
* MEMS/NEMs

« ULP Analog
« ULP Signal analysis
« Data Comms
*RF
* Energy Harvesting

Smart building

* Intelligent Ambient
Low Power Sensors

e Data Comms
* RF and wired

* Energy Harvesting
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Wireless Is pervasive .. Today
Some Proprietary RF links & Many use Standards

Alarm and Security B ontrols

Sub 1 GHz SoC n - 2.4 GHz Radio

Ne? 32KB Flash, USB 2.0 RFACE 8051 MCU,
) 32 KB Flash, USB
OSiislecEEREE | IEEE 802.15.4 compliant
cc1101 . System on Chip
RemoTIl SW
Sub 1 GHz Transceiver

Proprietary solution
+ MSP430 MCU,

Up to 500 Kbps
-112dBm sensitivity

Smart Metering Wbw Power R . -
Battery: 30-100mAh Ireless Audio

PurePath™ Wireless

ZigBee Narrowband ‘
System on Chip 12.5 KHz channel spacing @ \ Just Released it
* )} |EEE 802.15.4 compliant  -118dBm sensitivity High Quality
=4 - CC259x Range Extenders O ) "N\ Wireless Audio CC2590
4 g ¢ " 2.4 GHz Range Extender

S Sport & HID /
System on Chip

IEEE 802.15.4 compliant _ ‘
+ CC259x Range Extenders CC2540 Q

| ﬁ

CC2500

Sub 1 GSHZ '3I'(r)angceiver Bluetooth Low Energy ) 2.4 GHz Transceiver

-112dBm sensitivity

Home Automation & Lighting L B 1 P J ),
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Elements of a Wireless Sensor Node

Easy to Deploy:
L Cost of deployment(or change battery) > cost of sensor
Uinter-operability with existing “wireless networks”
U Multi- Standard Support
U Multi-Modal Sensor support with “unified” interface mechanisms
Secure - fast friend handshake, fast drop of foe
U Configurable: Master, Slave or Both

dCost- S QVolume ~ cm3 O Lifetime ~decade
Self Sustaining Energy Always on & Always Aware
(] Multiple Sources of Energy: UEnergy efficient
O Fixed: Primary Battery U Sensing and Sense signal conditioning

O Smart “Communicator”:
U Connects when deemed necessary
UTerse : Compressed Data

O Harvesting
(High density Storage:

dChargeable Battery, O “assessment” computation
USuper Caps O Complex signal computation
JRe-claiming dcCan Hibernate

Uretain “history” at Full Power Loss
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Power Consumption: Example

The Challenge of Powering a LPRF System

vce Vss P1.x/P2x P3.x/P4.x
+ + 2x8 2x8
L L T e e FA -« S
RADIO CONTROL E N + + YouT
1 ] ] —— ] H ADC10 Ports P1/P2
L) 1]
x U loesiccoa ™ 2% | Faen RAM CE | PO | I | Lt I
[ System ] X8 1/
[\ <ADC = o ' R Tt 1kB 12 Interrupt 2x8 110
3 brl ] 16kB 5128 Channels, | |2 0pAmps] | capability, | Jpull-up/dow
=] - T =5 H MCLK 8kB 5128 Autoscan, pull-uprdowrd | resistors
8 § O ' ptc I || resist tors
E 1]
| | = 14 | | 1
[\ {ADC & & © o Hpsax ' 1oz MAB
a = 2 w Hesoiepon : cPU
H z o | L si incl. 16
RF_P 0 FREQ x << E Registers VDB
RE N W = & |Hmcsa '
N g—n 1./90 SYNTH = - w H
z w ~ | = GDOO(ATEST) :
— = X — = H Emulation
5 o S GDO2 ! (2BP) Timer_B3 USCI_AQ:
o w < < 1 Watchdog Timer_A3 i
UARTILIN,
o ] 3
(@] ™S = H JTAG Brownout WDT+ acc IrDA, SPI
= E (L] : Interface Protection aCC Registers,
5 = =] H 1516-Bit Registars Shadow uscl_Bo:
o 'l H py-Bi Wire
@] H y
o] [ ] [ ] |2 e e
T T T E— E— E— E— I

T ] | BET/NMI
RBIAS XOSC_Q1 XOSC_Q2

CC2500 Typicals: MSP430F2274 Typicals:

Vcc Range: 1.8V to 3.6V Vcc Range: 1.8V to 3.6V
WOR Sleep Current: 900nA Sleep Current: 0.1uA @ 3V
Idle Current: 1.5mA 32kOsc Current: 0.9uA @ 3V
FSTXon Current: 7.4mA CPU off Current: 90uA @ 3V
Rx Current: 15mA @ 2.4kB/s Active Current: 390uA @ 3V
TX Current: 21mA @ 0dB
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Present Performance

Sensing Rate 10 100 1000 Hz

Awverage Sensing Power 33 303 3000 uw

Awverage uC Power 2 7 60 uw

Average Radio Power 2 2 2 uw

Total Average Power 37 312 3062 uw
Estimated Battery Lifetime* 4.61 0.55 0.06/ Years

* 500mA-Hr 3V Battery
-- Reporting results once/day with 1kB per node and 20 nodes transmitted --

Target Performance

Sensing Rate 10 100 1000 Hz

Awverage Sensing Power 2 16 150 uw

Awverage uC Power 1 4 30 uw

Awverage Radio Power 2 2 2 uw

Total Average Power 5 21 182 uw
Estimated Battery Lifetime* 31.64 7.97 0.94 Years

* 500mA-Hr 3V Battery
-- Reporting results once/day with 1kB per node and 20 nodes transmitted --

= Power will be low enough to use energy harvesting in a small “box”
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Next Generation

Wireless Sensor Node

Wireless Transceiver
(Zigbee, Bluetooth,

NVRAM
ROM RAM (FRAM)
‘ Data Bus
(@)
1 H B e
8 5 7
Sensor (pressure, temperature, o) % o
= > Analog uP Core
N & AN S N —N
gccelerometer, ultrasound, = S 5 Control (MSP430) MAC
strain gage) and/or transducer S © %)5
c © ]
31 & B B il 1l 1l
()
I/O Bus
PMU
119 Control |

proprietary low-power)

Local Interface

) buttons, k d,
QSensor interface and read-out ( ULEOSE, L(éy[?f

UEmbedded power management unit
UCommunications: Low power wireless Interface
ULow-power embedded processor subsystem

Power Source (battery,

storage (super capacitor)

solar cell, energy
havesting) and/or

Antenna
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Energy Harvesting: Sources and Technology

Harvested Power

Energy Source
Vibration/Motion

Human High-Q needs to be resonant 4 pW/cm®
Industry  with vibration (Wide Band ?) 100 pW/cm?
Temperature Difference
Human
Industry
Light
Indoor  Shading and “dirt” coverage 10 pW/cm?
Outdoor  “on demand light possible” 10 mW/cmZ

25 pW/cm?
110 mW/cm:?

Needs good cohtact with
body and high Delta-T.

RF
GSM Only useful in very close 0.1 pW/iem?
WiFi proximity to source 0.001 mW/cm?®
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Energy Harvesting

Input Voltage
Reg

Power Good
Indicator
UV, oV)

LBST Csron —_ =
4.7uF +
22uH Batteryi>100uF)
* VSTOR
+ e C L
so [ Liow oo o
ell F A LBST WVSTOR VBAT  VsS
. I‘vss wsle
[ VBAT_OK
= R zluw_oc VBAT_UKE—D

) bq25504
E'vcc_smp ox_rrod 10|

Vss 3

VIN_DC

LBST  VSTOR VBAT vss
L
Boost Charge
Controller
—4|> R avss
Enable

>~ M VBAT_OK
L -

Roca
15.62M0, Crer VOC_SAMP OK_PROG
4 |vReF_samp |: BAT_SAVE
00| T_PROG o v ‘—@ P Bstiory Theshold
L =1 fe] [71 T3] I w [= e —
- vREF_SamP I} [ OK_HYST
Bensing
Element
= P! >
ROVZ - o 5 vref
4.02M0 ﬁmm |
Vrel
Rovi L
5.50M0
L L OT_PROG VBAT OV VRDIV  VBAT_UV
-
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Rechargeable Li-ion Battery Example

LIR2032 Typical Discharge Characteristics at Various Currents
; 4'00%“‘"‘-—_‘
E 375 E"_‘—'——?"H\
& 350 e N
0 325 tocmAN\N_\
2.75V ” 300 \ | |\ozoma
s LI
<600 mQ 5 CNErGE:COICV20°C C 4.2V AOmA X2 Shrs, 0.5CA
>500cycles(=80% capacity) 0 S
Capacity(%)
Nominal Weight 2.8+0. 3g

http://eemb.com/pdf/Li-ion/LIR2032.pdf

Greater than 1mA for 0.2 x Capacity to 1x Capacity
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MCU Energy Awareness

Battery
capacity

100Wh

10Wh

1Wh

0.1Wh

Battery
lifetime
~1 x10° computations/J -
(laptop CPU, IEEE Spectrum 3/2010) ’
. 1day
(Con<iimer /
af =~/ CESSor
1 week
N N Antral
25 x10° computations/J
(ultra low power MSP430) 10 years
I

>

Energy needs

\4

13 TEXAS
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Digital CMOS Power Contributors
- Active

 Active power is determined by
 the delta voltage between in- and output

 the charging capacitance

Rpar >
* the frequency and the amount of Vi Vouti!

gates switching par

« Dynamic power consumption:

Fy

lynamic = p switch

'Vdi/ 'f/ock 'C/oad°N

C
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Total power versus Vg4 for min. cap. cells

« Dynamic power consumption:

P

B 2
dynamic — Pswitch * Vdd -f clock 'C/oad ‘N

Ion
Vdd -C

load

e Speed: T

Speed per gate [1/s]

1.0E+10

1.0E+09

1.0E+08

1.0E+07

——max. freq....

*~—

-

1.5v 1.25v 1.0V 0.75V

Voltage

— Since C, 4 heeds to be minimal for minimal dynamic power, the
energy optimal approch to speed is to set supply voltage according to
maximal desired speed of a gate without adding to its drive strength
(input capacitiance to the previous gate)

— In this way also leakage per gate scales with supply voltage ...
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Digital CMOS Power Contributors
- Leakage

Gate leakage

T Vout
- 1 l Drain junction
1 leakage
_ KSub-threShoId
« Leakage power has several sources: current

 Historically dominated by sub-threshold and junction leakage
(FOM: Vi, Vi)
« Gate leakage is more critical with advanced process nodes

(FOM: t, and V)
P

Static = Vdd ) (I leakage, junction + l leakage,gate ) N
eV, - N-(e WM 4 g Ftor/Ves )

 All gates are affected — also those who are not active

« Static power consumption:
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Power Dissipation and Device
Characteristic

Ion
. log(lys) determines speed

« Dynamic power consumption:
&l

Vi, adjustmefent
determines jeakage

- 2
P dynamic Pswitch 'Vdd -f clock 'C/oad -N

« Static power consumption:

Sub-V, slopé IS femperature
depengent and modern
process shows GIDL/DIBL

oV N ,(e—Q‘Vth/kT + e_F'tox/Vdd ) =Vgs

Vdd, new Vdd,old

P static — Vdd (l leakage, junction + I leakage,gate ) N

= Historically processes have been optimized for speed
= Thinner oxide increases tunneling leakage currents

= Higher temperatures degrade sub-threshold slope (S) and therefore
also leakage currents

= As long as no digital circuit is completely shut-off, increasing
functionality and speed (~ more current) will increase leakage currents

Tl Information — Selective Disclosure - -




Logic Power Dissipation vs. tec

nnology and V

1.0E+10 —e—max. freq.[]
SvT
Power per chip at for a standard CM _ 1.0E+09 | *— ar chip —e—total power
at activity factor 0.01% and 100 \ ctor 0.01%
o 1.0E+08 —&—dynamic power
1.0E-05 et
" 1.0E+07 — tafi
— 1.5V 1.25V 1.0V 0.75V + static power
Voltage
S’ 1.0E-06 - — 1.0E-06
‘:‘ & . E
g /// — \
_ o

(@] /4/// ;
o - —e—total power 0? .

1.0E-07 o 1.0E-07 -

—8—dynamic power . .
—a— static power
1.0E-08 ] 1.0E-08
130 90 65 45 1.5V 1.25v 1.0V 0.75v
Voltage
process node

— Leakage currents cause severe problems in advanced technologies
becoming dominant power contributor

— Supply voltage lowering helps for power saving, but at cost of speed
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Active / Leakage Power

Importance of

active power * Dynamic power
0 scales with
1/node*
100W large MPU Large MPU

 Leakage power
gets worse per

100mwW APp. processor node (without

design tricks ...

v

Cont Control
100pW [ MC [ MCU

—————— I@ngance of
100mW  100uW  100nw  leakage power
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Power and Scaling

With decreasing V44 (at even increasing number of transistors N)
the leakage can only be constant when V,, does not increase:

constant |,

L log(l :
 Static power consumption: 9(lgs) Sfiallrjg

’D Static = Vdd>< (l leakage, junction T I leakage,gate) X N
~q Vin /KT =T toe Vag )
ocV XN X ( e +e

* Speed: f o lon

maX Vdd °C

load
iV

: > gS
Vdd, new Vdd,old

= Scaling V44 and keeping C,,.4 constant is necessary for smaller area

= To compensate sub-V,, leakage, V, has to increase resulting in lower I,
(reduced speed)

= At small t,,, gate and s/d tunneling leakage is a severe problem

= While reducing speed (lower V), tunneling leakage decreases as well
(at reduced speed)
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Technology Scaling for ULP

To optimize for leakage and speed/active power on technology and
circuit level it is beneficial to have two types of transistors ...

| l,, IS reduced
A |Og(|ds) O(I)gtermines speed A Iog(lds) o

Vi adjustn‘;\enté
determines leakage

Ioff :
determines leakéage

Vv RV

. Vs . Vogs

Vdd, nevadd,oId Vdd,new Vdd,old

= Scaling V44 and keeping C,,.4 constant is necessary to active power
Improvement of advanced CMOS

= Gate and S/D leakage needs optimization from standard CMOS
= To keep leakage low a second type of transistor is kept in the process
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NVM Technology Comparison

Flash FRAM
Bit Line
Drive
Line
Source Bit Line| Pzt
Line Word Line
Control Gate Wor
Line
Float Gate
ARRAY PERIPHERY ‘\\

FEOL = Front end of line
BEOL = Back end of line

» Good read speed (single tranistor)

» Very dense bit cell

» Floating gate memories need high
voltages to write (>10 V)

« Exhibit slow writes/erase cycles

* Limited endurance due to oxide
damage

* Read speeds slightly lower than Flash
* Bit cell size larger than Flash

* No high voltage - only 2 mask adder,
no high voltage needed

* Write current as low as read current
« Endurance (theoretically) infinite
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//upload.wikimedia.org/wikipedia/en/2/2c/Flash_cell_structure.svg

Key Memory Technology Comparison

Nonvolatile
Retains data Yes No Yes Yes
without power
Write speed
(13 KB) 10ms <10ms 2 secs 1sec
Average active Up to
Power [UA/MHz] 82 <b0 10mA 20

- 1 million e
Write endurance billions (10°) Unlimited ~500,000 10,000
Dynamic
Bit-wise Yes Yes No No
programmable
Unified memory
Flexible code and Yes No No No

data partitioning

V.C. Kumar, Texas Instruments - August 20, 2012

Tl Information — Selective Disclosure - ?NE’S‘ASTRUMENTS




Traditional Bandgap Reference

Traditional bandgap Ve = Vi + aVilnN ~ 1.2V
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Switch Cap Reverse Bandgap Principle

Reverse bandgap Vige = Vip/oo + VilnN ~ 190 mV
AVDD . AVDD
Phase 1 Phase 2

@ ly @ [y*N

VEHF —_ ! I/h'H_? —_ ’
- Vveri Vrer
Q! - 4'\)QF -—

| G 1 G

C
I U g V.=V . +V.InN
ref 1 EB1 ref 7 refl
C,+C,
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Reference Core Schematic

Qo

R
R1 %

10
0

M
EN—|

AVDD
M }_4_{ M3 Me
EN
" v Eoow M
I N I I
| | | |
lo=Vge/Ro M
\ 4
Co
Mo M; e
Q1
”_| ﬁ ﬁ I—" Ci

P My

Parasitic part of C,/C, is the main error source
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Sample / Loooooong Hold

SMPL

Vref

Drain-source
leakage

Drain-body
leakage

Itail

2nA
SMPL‘ My V. |
Vref AN |
/l M22 M23 }—4
L—L My Mig-—= output
SMPL —L Mgy }_<_| Mas
Cs

Power < 0.2uW
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Conventional Fully-differential SAR ADC
(Sampling Phase)

1

AL —

BARA

Vv — -I-—>
-|-—— +

C/2 Cf4 C.I’S

iy
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ADC Power Reduction. Moving
Fully-differential ZPS SAR ADC

| T
Ve |
R
><; AV A A
j‘ . LCH l(fﬁ 'L(fl .
T

(Sampling Phase)

Power < 10uW for 16b @ 1kHz
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Summary

Easily accessible wireless sensor node capability Is
coming soon to fit across many applications

Solutions exist and near coming
Low power uC
Low power analog and mixed-signal
Lower power RF
Energy harvesting improving
Process technology to support

Need to consider next level of integration
— especially sensors

Need to plan infrastructure data connectivity
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Thank you for your attention.
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